Project description & installation guide
Team A1: Code craftsmen

Bachelor in applied sciences

Lucas De Greef
Syan Delbart
Charles Kwakye

Wieland Vandebotermet Academic year:2023-2024
Tristan Van Loy
Jen Verboven Campus : Geel

Table of contents

Table Of CONTENTS....e ettt e e e ens 1
[akgoTe [o] dTo] o H PP PPPRP 4
TEAM MEMDIEIS ettt ettt et e e e e e e e aaeeneanenenseneenennenens 4
e o] (=Yoo [STTo] g o1 d o] o RO PP P P 5
(0] o] [=To3 £ \VZ= TSRS 5

S Telo] o1 N O O PP P PP P PP 5
MUSE AV ..ottt et e et e et e et e e e eeneanen 5
SNOULA NAVE...ceiini ettt e e e e e e e e e ens 5

(0]0) 2o} £ETolo] o |- NN OO P PP OUPRPIRY 6

G (L= LR (=T TP PP PP PP PP 6

___|
GROUP 1: CODE CRAFSTMENT 1

(D F2 7= I o7 011 (=13 f 1o o PSRN 6

Data Normalization.........ovuiuiiiiiiiiiiiiiiiii e 6
D1 e I (0] £ - - PSPPSR 7
Data ViSUAUIZATION ...ieuiiiiiiii et e 7
TECHNOLOZIES USEA ..uininiiiiiiiii ettt ettt e e e e e e e e e enansnanenenensnsns 7
NOAE-REA.....iiiiiiiiiiiiii e 7
POSTEIES QL ettt ettt ettt et e e et e e et e e e aen e 8
Grafana ...ttt e eaaes 8

[N =3 PP PPRRPION 8
ESP32 MICIOCONTIOILET «.eeiniiei ittt et e e et e et e eae e e eneenenaneanas 8
(O N I I o] (o] (o] o1] E PP 8
ULEraSONIC SENSON . .uiutiuiiiiiiiiiiiiii ittt e et e et eaea et eaaeanensas 9
LAY (o] 11 (=Te (U] £ PP PPPPPPRPPPRN 9
2= = 0 1 (o 1 9
(@ LYY g1 0 (=T = T3 1 o o N 11
(D 1=Y o] (o) Y41 g T=T o | PP 13
S CUNITY MEBASUIES 1uiuitiiiiiiiieietetete et eeeteteteteteseseteteresesasatereseseresereresesesarerereresnnns 14
Results (benefits for stakeholders) ... 14
Installation ManUalcoiiuiiiiiiiiii e 15
[\ [oTe [T 2 =T o PPN 15
ASSEMDLY DIY SENSOF cuiuiiiiiiiiiiiiiiitetee e etetetetetetetereeseeeatetereesasssasesssnsnsesesesnsnsnsenes 19
(O7eTe [T BT (ST =Y o =] o PP 20
INFraSTIUCTUIE . ..etie ittt e e e e e e eaes 23
Y= (] 23
AVVS ettt ettt et ettt e ea e eaaes 23
The Web ApPlCation. ... et e e et e et e eaetaensnsaanenaenan 24
The GitHUD FEPOSITONY . ittt e e e e e r e e eeeearaeaeaeaeaeeraeaananes 25
The inStallationc.oiviiiiiiiii e 25
L8R L g =T (PP P PP PP 25
(© =1 -1 o F- PPN 25
(O70] o o2 [UT=] '] o S PP PPN 27

GROUP 1: CODE CRAFSTMENT 2

___|
GROUP 1: CODE CRAFSTMENT 3

Introduction

This document serves as a comprehensive resource understanding and implementing
our solution for gathering, normalizing and visualizing data about water levels in Flanders.

This document is organized into two main sections:

1. Project description: Here we delve into the details of the project. More about the
objective and the scope of the project, the key features and the chosen

technologies can be found here.
2. Installation guide: This section contains a step-by-step guide to successfully
install, configure and recreate everything you need to make this solution work

yourself.

Team members

Jen Verboven Tristan van Loy Wieland Syan Delbart Lucas De Greef
vandebotermet

Charles Nana Kwakye

GROUP 1: CODE CRAFSTMENT 4

Project description

In this section, we’ll go over the structure of the product we ended up with. Among other
things, we’ll take a look at the functionalities we implemented, how we retrieved and
processed the required data and what technologies we used to achieve the results.

Objective

The objective of this project was to provide local governments of provinces in Flanders
with an online platform to monitor the water levels of second grade water streams in
Flanders. Using this platform, they would then be able to more accurately track water
levels, and thus be able to make more accurate and swift decisions when measures
would have to be taken against those water levels.

Scope

In this section, we define what we minimally have to make for our product to be
effective, what would be nice to have on top of that and what we will definitely not
realize during this project.

Must have

For our minimum viable product, we have to set up infrastructure which collects the
necessary data about second grade water streams from the different possible sources
discussed in the data flow section. This data should also be stored in a normalized format
according to the OSLO standards.

Also, we have to create a dashboard where the retrieved data about second grade water
streams is visualized. This dashboard should be structured logically and made easy to
understand for non-technical end users.

Should have

On top of the dashboard, it would be of great use to the end users if the graphs of the
dashboard are displayed in a nice front-end application which is easier to reach for a
larger number of end users.

___|
GROUP 1: CODE CRAFSTMENT 5

Furthermore, the options to both add new sensors to the database and to be able to
manually insert measurements for any available sensor could be of great use to certain
end users.

Out-of-scope

The prediction of water levels at certain locations based on actions taken or events
happening would be the ultimate goal of this product but was out of scope for this
particular project.

Key features

In this section, we go over the features we were or weren’t able to implement during the
realization phase of the project.

Data collection

woterinfo.be \
| Wod',e,rle,ve,l datoa
Ultrasonic

Sensor
W level ol
aterleve o\t% Node-Red (data

"fod:e,f‘le,\/e,l olata—_—-—? CD“G,C't;OV\ L

End user

nomahza‘t‘non)

In Node-Red, we set up our data collection functionalities so that data from the three
different sources visualized above is brought together on the same platform. More
detailed information about how this works is given in the section about data flow.

Data normalization

Using functions in plain JavaScript inside of Node-Red, and a predefined application
profile for normalizing data about waterbodies defined by the Flemish government, The
data we retrieve from waterinfo.be and from sensors is normalized to the OSLO
standards.

___|
GROUP 1: CODE CRAFSTMENT 6

Data storage

The normalized data described in the data normalization section above is sent to an
Amazon S3 bucket in the JSON-LD format. The data is also stored in a PostgreSQL
database without the application profile context for further use. This dual-storage
approach ensures that we have the normalized data available in the S3 bucket as well as
a relational data source which is more accessible and necessary for further processing
of the data on platforms like Grafana.

Data visualization

The data stored in the PostgreSQL database is then used to create visualizations in our
Grafana dashboard. Here, we made sure to make the created graphs are as clear and
easy to understand as possible for any type of end user, while at the same time also
providing the necessary insights about the data to be able to effectively reach the
objective of the project described earlier in the project description.

The visualizations in our dashboard are updated with fresh data every twenty minutes.
We gave our data collection functionalities this interval as the external data source we
work with only provides fresh data every fifteen minutes. Because of some slight timing
differences between the various stations provided by waterinfo.be, we chose to use this
interval to avoid trying to fetch duplicate data records too often.

Technologies used

In this section we’ll go over the technologies we used to realize the key features
described above

Node-Red

For the backend, we used Node-Red as provided by Cipal Schaubroeck on the MyCSN
platform.

Over the course of the realization phase of the project, Node-Red proved to be a very
versatile tool for setting up multiple backend functionalities and combining multiple data
sources relatively quickly. We were able to combine and transform data retrieved through
API calls as well as data from our own proof of concept ultrasonic sensor over an MQTT
connection without having to write too much code manually or having to worry about how
to make a connection to those data sources in the first place.

___|
GROUP 1: CODE CRAFSTMENT 7

We were also able to write our own APl endpoints in Node-Red which we would later use
to provide our web application with data from our own database.

PostgreSQL

As our data storage, we used a PostgreSQL database as provided by Cipal Schaubroeck
on the MyCSN platform.

An SQL database like PostgreSQL was needed as Grafana needs an SQL database to
function properly. On top of that, our team members had way more experience using
relational databases than they had using NoSQL databases, so this was also our
preference.

Grafana

As our data visualization platform, we used Grafana as provided by Cipal Schaubroeck
on the MyCSN platform.

With Grafana we were able to provide our web application with various user-friendly
visualizations of the data we collected from waterinfo.be and our own ultrasonic sensor.

NextJS

For the front-end, we chose to use Next)JS. We made this decision because NextJS is a
React-based framework, which all of our group members who specialize in application
development are familiar with. We picked NextJS over React itself because Next)S
provides some extra built-in functionalities which React does not.

Esp32 microcontroller

Esp32 is a system on chip (SoC) that supports 2 of the mainstream wireless
communications: Wi-Fi and Bluetooth. The reason we are using this microcontroller in
this project is the good integration with the Arduino framework. This framework gives
some built in libraries that makes fast development possible.

MQTT protocol

For sending the data from our own from our prototype sensor we used the MQTT
protocol. This protocolis a standard used for loT devices. It’s also easy to implement
and use for sending data effectively. We also chose this way of data transmission as it

integrates well with Node-Red.
|

GROUP 1: CODE CRAFSTMENT 8

Ultrasonic sensor

Initially, our team was assigned a Meratch NB-IOT sensor for making a proof of concept.
We ended up not getting access to its data, so we came up with our own solution for a
DIY sensor.

To measure the distance between the prototype device and a surface, we utilized an
ultrasonic sensor. The microcontroller computes the data and sends it to the MQTT
topic located on Node-Red on the MyCSN platform. For the DIY sensor, the choice was
made to do a quick build on a breadboard, because in combination with the esp32 dev
kit and ultrasonic sensor the solution is quick and simple to rebuild.

Architecture

Architecture wise a lot was provided for us, the architecture for our web application
relies on Amazon Web Services (AWS) for hosting, ensuring scalability, reliability, and
performance.

MyCSN

node red

@ﬁi Normalizer |«
external data
api soucrce

AWS
o

NextJs web 8
(L1 (L ks

Y

<

Data flow

In this section, the data flow throughout our product will be discussed.
-

GROUP 1: CODE CRAFSTMENT 9

s ~
m‘teﬁn?obe MYCSN
Wn.'te,rievel cata
Ultrasonic “ Normalized
Sensor ____‘__—__Wos'tef'leve[doto = Wterlev@'f Amazon S3
> | Node-Red (data dota bucket
= collection &
End user normalization) \
Normalizee
waterlevel Woterlevel dota waterlevel data
dota :
S~
- Norie-:’ec_l APT Norwalized
Woterlevel Normalized / endpoints waterlevel otDCtD\-________‘_
information waterlevel Pos'tgre,SQL
‘ / data database
TER - —
(woterlevel Normalized
WaterWatchers grophs | Grafana < woterlevel doto
web appl‘.ca‘tion doshboarel
o /

As visualized in the diagram above, our solution can, but doesn’t have to, retrieve data
about water levels from three different types of sources. First up, we have waterinfo.be.
This can in fact be any type of external data source which can be queried through API
calls. The second type is an ultrasonic sensor. The third type is an end user of our web
application.

All of this data is initially retrieved in our Node-Red backend. In here, we have set up API
calls for retrieving data from waterinfo.be on an interval. For the sensor data we have set
up an MQTT connection over which our proof-of-concept ultrasonic sensor sends its
data. This sensor has been manually set up to send most of the data needed to make our
dashboard/web app work properly. Lastly, end users can manually put in their own
measurements for any sensor they added through the web application or for any sensor
from waterinfo.be.

Next up, all of this data is processed in Node-Red and added to the PostgreSQL database.
From there, the data is either queried by the Grafana dashboard itself, where it’s used to
make visualizations, or queried via APl endpoints in Node-Red. The web application can
then query the data in the database through those APl endpoints or can embed the
graphs created in the Grafana dashboard through the use of iframes and Grafana’s API.
The web application is the final destination in the data flow before it reaches our end
users.

GROUP 1: CODE CRAFSTMENT 10

User interaction

Lastly, we developed a web application to make the data and the visualizations of that
data more easily accessible to end users and provide them with the option to insert their
own data.

On top of providing the users with easier access to the already existing data and graphs,
the web application also further extends those functionalities. Through the web
application, our end users can also add images of their sensor setups to the database for
clarity and personalization, as well as choose to receive push notifications about the
water level at certain locations after subscribing to that location.

The dashboard homepage

The dashboard is made of the iframes which has embedded Grafana graphs and the
select components, which selects locations and the time.

Dashboard

Selected Stations

Zuienkerke/Aanvoersioot De Katte x Bree/Abesk x De Haan/Ader Steenovenwik Wenduine x Nevele/Afslui : o (Nieuwe Molenbeek X AffigemyAfsluitschuifW10K/Okaibeek x

14022024, 08:33 1 14/02 /2024, 14:33 09 Save selection

After it we have 2 Grafana graphs which show the latest water levels:

e Abargraph that shows all the selected locations
e And a Map Graph that shows all locations on the map.

General overview

Latest Water Level by Station Critical Waterlevels In Flanders

34.9
18.9 3) s
15.7 R . G
A i @ °F %
6.03 AT TR

. 0.0920 138 [

After which we have the individual graphs for each location, that show the latest water

levels.

___|
GROUP 1: CODE CRAFSTMENT 11

Water Watchers —Heme Measuramont

Heights per station

Zulenkerke Bree De Haon Nevele
Aanvotrsioot De Ketie Abeex e Steensenuik Wenduine: Atshitschuit/Pockebeck
e a» s5m s
o wn .
o sz
\ in
s | | aom
i / &n
N L) W N me ww woe s o N 2w W aw e
Asse Affligem
I —— ATSSEEHTWI KOk etk
e
som
s
s o
T 5o
B) G0 R0 130 WG 150

The Measurements

The Measurements tab is to add a warning to a specific chosen sensor and water height.
After wich the user will be given a notification if it reaches or falls to the specified height.

Water Watchers Home Measurement Measurement List

Select sensor

Sensor
16/02/2024, - B
Moment

0 m

Water Height Measurement

Add water level for lo

The List shows all sensors with a measurement.

lome Measurement Measurement List Sensor Sensor List
Water Watchers + M M List S Sensor Li

D Measurement ID Measurement Moment Actions
[7 5555m 2024-01-24T15:01:00.000Z |
1 El 222m 2024-02-15T13:03:00.0002 |]
2 0 444 m 2024-02-06T13:12:00.000Z |]
3 n 5555 m 2024-02-14713:13:00.0002 |
4 1z 191m 2024-02-01T12:53:35.3932 |}
5 13 19m 2024-02-01712:53:37.4442 I]
8 14 18m 2024-02-01T12:53:39.4322 1}
7 15 189m 2024-02-01T12:53:41.4257 '
a 16 192m 2024-02-01T12:53:43.4277 |

___|
GROUP 1: CODE CRAFSTMENT 12

The sensor

The sensor tab is to add sensors, it requires a municipality, name, longitude, latitude and
optionally a mac address and image.

Water Watchers Home Measurement MeasurementList Sensor Sensor List

Browse... | No file selected.

The List shows all sensors.

Water Watchers Home Measurement MeasurementList Sensor Sensor List

D SensoriD Municipality MAC Address Station Name (Longitude | Latitude) ~ Actions

1 Aa Poederlee/Stuw3 | WoNg
2 Aalst Molenbeek A G
3 Aalst Stuw2/Molenbeek | WoNs
4 Aarschot Grote Motte I Wo R
5 Aartselaar Benedenvliet A O
6 Achel Warmbeek I Wo s
7 Affligem AfsluitschuifW10K/Okaibeek A G
8 Albertdok Pompstation/RodeWeel I Wo R,
9 Albertdok Schelde | Wl
Deployment

To deploy our web application, we decided to go in two different directions. For testing
purposes Vercel was used is this is an easy way to host web applications but has its
limitations. With these limitations in mind, we decided to build our own infrastructure
on AWS. To build this infrastructure Terraform and Gitlab were used, terraform as a way
to define our infrastructure as code and Gitlab was used for its easy-to-understand way
to build CI/CD pipelines this ensured that there was a certain level of automatization to
the setup of the infrasructure as well as the deployment.

___|
GROUP 1: CODE CRAFSTMENT 13

Security measures

In the Node-Red backend, we used SQL prepare statements where possible when we
insert data into the database. These statements predefine the structure and the data
types of the data to be inserted before the query is executed. This way, we can severely
limit an attacker’s options during SQL injection attacks, as the insert will fail if the
predefined parameters aren’t met.

Results (benefits for stakeholders)

Through making use of our product, local governments in Flanders will now have a way to
more accurately and swiftly analyze water levels of second grade water streams in
Flanders. This will allow for quicker and better decision-making and the taking of
measures against problems regarding water levels will be facilitated as we provide them
with one centralized source of data and less personal communication will be needed to
have everyone on the same page.

___|
GROUP 1: CODE CRAFSTMENT 14

Installation manual

In this section we’ll explain the steps one needs to take to recreate our solution.

Node-Red

To start off, create a new Node-Red project. Press ctrl + i on windows or cmd +i on mac
whilst in your new project to import our configuration file added in the project deliverable.

You can either choose to import the file itself by choosing the “select a file to import”
option, or you can paste the contents of the file in the textbox underneath the “select a
file to import” button.

For the configuration of your postgreSQL database, start out by double-clicking any one

Import nodes

Clipboard Paste flow json or| XL select a file to import

Library |

Examples

Importto | current flow | new flow

Cancel

of the postgreSQL nodes you can find in one of the flows. Beneath is an example node:

@ Queue: 0

___|
GROUP 1: CODE CRAFSTMENT 15

The following popup will open:

Edit postgresql node

Delete Cancel m

{* Properties & 3 =
Figure 2: ...
= Server postgresql viié#
. . | postgresgl
O Spit resutts I Add new postgreSQLConfig...
Number of rows

per message 1

Query

Figure 1: ...

In he

In here, click the “Server” dropdown and choose the option "Add new postgreSQL
Config...”. After making the selection, click the penicon to start adding a new database
connection:

= Server Add new postgreSQLConfig... v ‘

The following popup will open:

GROUP 1: CODE CRAFSTMENT 16

Edit posigresgl node > Add new postgreSQLConfig config node

Cancel Add

£+ Properties & 3
¥ Name

Connection Security Pool
= Host v & 127.0.0.1
Port v % 5432
£ Database v % postgres
SSL ¥ © false =

Change the values in the “Connection” tab (which you are in by default) to the specific
values tied to your postgreSQL database. Then switch over to the “Security”tab and fillin
your postgreSQL username and password:

Edit posigresgl node > Add new postgreSQLConfig config node

#* Properties & |3
¥ Name
Connection Security Pool
& User = B
& Password el

You can give the connection any name you like by filling in the “Name” field. When you’re
done filling everything in, click the red “Add” button at the top right and your database
connection will be added to the list of connections you can pick from. To finish the

configuration of your database, you’ll have to go into every postgreSQL node in
all of the flows and change the “Server” of the node to the one you just
added.

Next up, for the configuration of the AWS S3 bucket, find an S3 node (in the dataflow to
s3 tab). It looks like this:

___|
GROUP 1: CODE CRAFSTMENT 17

s3 thomas-more-group1

Dubble-click the node and following popup will appear:

Edit amazon s3 out node

Delete Cancel m

#* Properties & B H

& AWS AWS v &

B8 Bucket -

I Filename

I Local
Filename

% Region eu-central-1 v

In here, fillin the “Region”, the name of your bucket in “Bucket”. Next up, select that you
want to add a new AWS configuration by clicking the option in the dropdown menu and
then clicking the pencil next to the dropdown menu:

& AWS Add new aws-config... v‘

In the next popup, follow the instructions at the bottom and fill in your AWS credentials.
When you’re done click “Add”:

___|
GROUP 1: CODE CRAFSTMENT 18

| Edit amazon s3 out node > Add new aws-config config node

Cancel Add

£ Properties = BRI

M AccessKeylD | |

M Secret .
Access Key | |

To obtain these credentials, sign up to Amazon Web Services, Then
either:

« click on your account name and select 'Security Credentials' then
click 'Access Keys (Access Key ID and Secret Access Key)' or

» select 1AM’ under 'Deployment & Management' from the AWS
console and create an 'TAM' user with a suitable policy.

Lastly, select the AWS configuration you just made and from there, data normalized to
the OSLO standards will be stored in your S3 bucket.

Assembly DIY sensor

When connecting this ultrasonic sensor, the voltage must come from the esp32 dev kit.
There is a pin present called “USB”. This pin provides the 5-volt supply to the ultrasonic
sensor and should also be connected “Vcc” pin.

Also, the “GND” pin of the esp32 dev kit must be connected to the “GND” pin of the
ultrasonic sensor. The "Trig” pin of the ultrasonic sensor is connected to “A4” pin of the
dev kit (“GPI0367”). The “GPIO” pin 12 of the dev kit is connected to “Echo” pin of this
sensor.

GROUP 1: CODE CRAFSTMENT 19

HC-SR@4

.
-
-
-
-

.o

. e

.o

.o

.o

Code DIY sensor

First, we’ll discuss what libraries we used to program the microcontroller and what they
are used for.

#include <ArduinoJson.h>
#include <ArduinoJson.hpp>
#include <WiFi.h>

#include <PubSubClient.h>
#include <Ultrasonic.h>
#include "main.hpp"

The include “AruidnoJson” library makes it possible for formatting the sensor data into
JSON format. The “wifi.h” library makes it possible for connecting the esp32 devkit to a
Wi-Fi access point. The “PubSubClient.h” header makes it possible for using the MQTT
protocol for the esp32. The “Ultrasonic.h” library keeps the code cleaner for reading out
this sensor. The “main.hpp” file is where all the confidential credentials are stored.

Next, we are going to declare which pin of esp32 will be used as “Trigger” pin and same
goes for the echo pin:

const int trigPin 17;
const int echoPin 21;

Ultrasonic ultrasone(trigPin, echoPin);

___|
GROUP 1: CODE CRAFSTMENT 20

The “wifiClient” is needed for esp32 to be connected to WIFI and “PubSubClient” is
used to publish data to an MQTT topic and subscribe to an MQTT topic:

WiFiClient espClient;

PubSubClient client(espClient);

This function is called “setup_wifi”. This will ensure that the esp32 gets connected to an
accesspoint:

void setup wifi() {
delay(1090);
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());

The purpose of the “reconnect” function is that if the connection to the MQTT server is
broken, it will try to reconnect to it by logging in again.

void reconnect() {
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
String clientId = "ESP32Client";
clientId += String(random(@xffff), HEX);

if (client.connect(clientId.c_str(), mgtt user, mgtt password)) {
Serial.println("connected");
// client.subscribe("groupl/#"); // Subscribe to the desired topic
} else {
Serial.print("failed, rc=");
Serial.print(client.state());

___|
GROUP 1: CODE CRAFSTMENT 21

Serial.print(" - Trying again in 5 seconds");
delay(5000);

The “setup” function is executed at the beginning of the program. It initiates the
“setup_wifi” function, and upon its completion, retrieves the MAC address of the ESP32
DevKit. Once obtained, the MAC address is converted into a char array. Finally, the
program establishes a connection to the MQTT server:

void setup() {
Serial.begin(96090);
while (!Serial);
Serial.println(F("Wifi Test"));

setup_ wifi();
// Haal het MAC-adres op en sla het op in de MAC-variabele

String macAddress = WiFi.macAddress();
macAddress.toCharArray (MAC, 18);

client.setServer(mgtt_server, 1883);

The loop function is designhed to continuously monitor the connection status with the
MQTT server. If the connection is lost, it triggers the reconnect function.

Within the code, a Json document and a payload array are declared, each with a size of
100 characters. Additionally, a "now" variable of long integer type is created to store the
current runtime in milliseconds.

The code includes a condition where, if the time difference between the "now" variable
and the “lastMsg” is less than 2000 milliseconds, it enters an if statement. Within this
statement, the ultrasonic sensor is read, and the data obtained is converted to meters
and formatted into a Json payload.

Once the Json payload is prepared, it is sent to the MQTT topic specified in the Node-Red.

GROUP 1: CODE CRAFSTMENT 22

if (!client.connected()) {
reconnect();

¥

client.loop();

StaticJsonDocument<100> doc;

static char payload[800];

unsigned long now = millis();
if (now - lastMsg > 2000) {

lastMsg = now;
float afstand = ultrasone.read();

doc["result"] afstand/100;

doc["sensor_id"] = 75;
doc["measurement"]="m";

serializeJson(doc, payload);
Serial.println(payload);

// Stuur de payload om de 5 seconden

client.publish("..", payload);
Serial.println("Payload has been sent");

Infrastructure

This section will cover how to set up the infrastructure for our web application

Vercel

To host on Vercel, all that is needed is an account and the GitHub repository where the
app is located. To deploy the site to the internet from the repository, start a new project
and follow the steps on the Vercel website.

AWS

The deployment on AWS is automated for the most part, however it is essential to do a
few checks before the infrastructure can be set up.

Since this works via a GitLab pipeline with environment variables it is important that
these are present. Below is a list of all the environment variables that are used in the
project:

___|
GROUP 1: CODE CRAFSTMENT 23

e ACCESS_TOKEN_INFRASTRUCTURE
e AWS_ACCESS_KEY_ID

e AWS_DEFAULT_REGION

e AWS_SECRET_ACCESS_KEY
e AWS_SESSION_TOKEN

e DISCORD_URL

e DOCKER_HOST

e DOCKER_REGISTRY

e DOCKER_TAG

e ECR_REGISTRY

e |IMAGE_TAG

e |INFRASTRUCTURE_REGISTRY
e OUTPUT_ECR_NAME

e OUTPUT_ECR_URL

e OUTPUT_ECS_NAME

e OUTPUT_ECS_SERVICE_NAME REPOSITORY_URL_INFRASTRUCTURE
e SCRIPT

e TF_STATE_NAME

e TF_VAR_aws_access_key

e TF_VAR_aws_token

e TF_VAR_ec2 count

If all these variables are filled in correctly the pipeline should run. The pipeline will first
send a notification to discord that it has started then it will check if the AWS credentials
are valid, if these are correct the infrastructure will be build with Terraform. When the
infrastructure is up and running the pipeline can also create and push a Docker image to
the ECR, this image will run on the ECS to have a functioning web application

start s docker — push — end

start_notification_testing validate_aws_credentials_testin a esting build_docker_image docker_image_testing end_ntification_testing

All the code made the infrastructure will be attached to this file.

The Web Application

In this section, we’ll cover the steps on how to retrieve and install our web application.

___|
GROUP 1: CODE CRAFSTMENT 24

The GitHub repository

Download the repository

https://github.com/syandelbart/watermonitor

The installation

Requires Node.js and NPM
Edit the .env.example into .env.local and fill in the blanks:

NODE_RED_API=""
API_USERNAME=""

API_PASSWORD=""
NEXT_PUBLIC_GRAFANA_URL=""
NEXT_PUBLIC_GOOGLE_MAPS_API_KEY=""
NEXT_PUBLIC_VAPID_PUBLIC_KEY=""
VAPID PRIVATE_KEY=""

NEXT_PUBLIC_APPLICATION_URL=""

In the Terminal use the commands:
npm install

npm run dev

The image
Requires Docker

In the Terminal use the commands:

Docker run build

Grafana

To recreate our Grafana dashboard (if needed), you can import the Grafana configuration

file we provided in the project deliverable in Grafana yourself.

|
GROUP 1: CODE CRAFSTMENT 25

https://github.com/syandelbart/watermonitor
https://nodejs.org/en
https://www.npmjs.com/
https://www.docker.com/

Start by navigating to the “Browse” tab:

)

00 Dasl

DD Manag
Q

2= Browse
+

B8 Dashboards

@ (m Home
e &% Browse
Bl Playlists e

'@' ® Snapshots
95 Library panels
O ©o

Next up, you can select the “import” option from the menu on the right:

00 Dashboards
[m]

Manage dashbeards and folders

Browse Playlists ® Snapshots P5 Library panels
Fry EI Playl hy e bi .

O = 1= Sort (Default A-Z v Filter by starred © Filler by lac v
O Alerts >
® General v

From here, using the JSON configuration file, you can either import the dashboard from
that file or paste the contents of the file into the textbox:

J Import

Import dashboard from file or Grafana.com

&, Upload JSON file

Import via grafana.com

Grafana.com dashboard URL or ID

Import via panel json

GROUP 1: CODE CRAFSTMENT 26

Conclusion

Water Monitoring is a project designed to help local governments in Flanders keep track
of water levels more effectively. The main goal is to provide a reliable platform for
gathering, organizing, and visualizing water level data.

The project encompasses various aspects including the collecting, normalizing, storing
and visualizing of data, and user interaction through a web application. Key technologies
used include Node-Red, PostgreSQL, Grafana, Next]S, ESP32 microcontroller, MQTT
protocol, and a ultrasonic sensor.

Through 4 weeks of meticulous planning and implementation, we have successfully
achieved our must and should have project objectives, enabling users to make informed
decisions based on accurate and timely data visualized on graphs.

In conclusion, the Water Monitoring project equips local governments with the tools
needed to make informed decisions regarding water management, ensuring a more
sustainable future for Flanders.

___|
GROUP 1: CODE CRAFSTMENT 27

	Table of contents
	Introduction
	Team members
	Project description
	Objective
	Scope
	Must have
	Should have
	Out-of-scope

	Key features
	Data collection
	Data normalization
	Data storage
	Data visualization

	Technologies used
	Node-Red
	PostgreSQL
	Grafana
	NextJS
	Esp32 microcontroller
	MQTT protocol
	Ultrasonic sensor

	Architecture
	Data flow
	User interaction
	Deployment
	Security measures
	Results (benefits for stakeholders)

	Installation manual
	Node-Red
	Assembly DIY sensor
	Code DIY sensor
	Infrastructure
	Vercel
	AWS
	The Web Application
	The GitHub repository
	The installation
	The image
	Grafana

	Conclusion

